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Introduction

Black box groups

Black box group model
@ Elements of the group are encoded as words over a finite
alphabet
@ Group operation is performed by a black box containing
oracles O¢g and 051

Oc g, k) = |9, gh)
Og'lg,h) = |g,9"h)

When do we use black box groups?
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Group Commutativity

Problem

Input: Generators g1, ..., gr of G (specified as n—bit strings)
Black box: Oracles O¢g and 051

Task: Determine whether GG is abelian
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@ Naive algorithm with query complexity ©(k?). This is optimal
deterministic algorithm up to a constant [l.Pak, 2000].

e Randomized algorithm with query complexity O(k) [l.Pak,
2000]. This is optimal randomized algorithm up to a constant
[F-Magniez, A.Nayak, 2005]
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Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as

h=gi'... gk,
where a; € {0,1} are determined by independent tosses of a fair
coin.
Algorithm:

@ Take two random subproducts hy, ha (< 2k queries)
@ Test whether hihy = hohy (2 queries)

© Repeat steps 1,2 for ¢ times (to give correct answer with
probability at least 1 — (%)C)

@ Answer that G is abelian if the tested subproducts commuted
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Main steps

@ Construct a random walk on a graph
@ Quantize the random walk using Szegedy's approach

o Evaluate the quantities in

1
S+ =U+0C)
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Quantum algorithm

Constructing random walk

S; — the set of all [-tuples of distinct elements from {1,...,k}
Gu'= Gu, - - - Guy» Where u = (uy,...,u;) € 5
t, — balanced binary tree with generators gy, , ..., gy, as leaves

Example. Let | =4,k =20,u = {3,5,10,4} € S4. Then
gu =93 - 95 - gio - g4 and t,, looks as follows

& e
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Quantum algorithm

Constructing random walk

Random walk on S

@ States are trees t,, u € S
@ Transitions from each ¢, are as follows
o With probability 1/2 stay at ¢,
o With probability 1/2 do
@ Pick a random leave position ¢ € {1,--- ,l} and a random
generator index j € {1,--- , k}
@ If j = uym, for some m, exchange u; and u.,, else set u; = j
© Update tree t,,
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Constructing quantum walk

We quantize a random walk consisting of two independent random
walks on S

e States are pairs of trees (t,,%,), where u,v € 5;

@ If transition matrix of the walk on S; was P, then the new
transition matrix is P Q P

Vertex (ty, ty) is marked iff g, 9, # gvgu-
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Quantum algorithm

Evaluating parameters — the fraction of marked vertices

Lemma. If G is not abelian and | = o(k) then

1 2
Pryes, [gugv # gvgu] > const - (l{:)

Thus, fraction of marked vertices, € = ) ((é)2>
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Evaluating parameters — the spectral gap

Lemma. If | < % then the spectral gap for the walk on \S; is at

1
least Scilogl’

Thus, the spectral gap, § = Q (@)
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Quantum algorithm

Estimating parameters — setup, update and checking cost

@ Setup cost, S = O(l)
e Update cost, U = O(log(l))
@ Checking cost C'= O(1)
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Quantum algorithm
Query complexity of the quantum algorithm

1 klog®/?1
S+ —U+C)=0 |14+ ——
VA ( Vi

To minimize quantum query complexity we set | = k2/3 and get

O(k*31og k)
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| A\

Unique split collision

Output YES if there exists a unique pair x,y such that
ze{l,....5 ye{E+1,... k} such that f(z) = f(y).

The quantum query complexity of unique split collision is Q(k%/3).
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Lower bounds

The quantum query complexity of group commutativity is Q(k2/3).

Idea: Reduce unique split collision to group commutativity by
constructing a group that is commutative iff function f has a
unique split collision.



Lower bounds

Summary

Problem. Decide whether group specified by & generators is
abelian.

o Classical query complexity is ©(k).



Lower bounds
Summary

Problem. Decide whether group specified by & generators is
abelian.

o Classical query complexity is ©(k).

@ Quantum query complexity is upper bounded by O(k’2/3 log k)
(algorithm based on Q-walk) and lower bounded by Q(%%/3).
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