On “Testing group commutativity” by F.Magniez
and A.Nayak

Laura Mancinska

University of Waterloo,
Department of C&O

April 3, 2008

Introduction

Introduction

Black box groups

Black box group model

@ Elements of the group are encoded as words over a finite
alphabet

Introduction

Black box groups

Black box group model
@ Elements of the group are encoded as words over a finite
alphabet
@ Group operation is performed by a black box containing
oracles O¢g and 051

Oc g, k) = |9, gh)
Og'lg,h) = |g,9"h)

Introduction

Black box groups

Black box group model
@ Elements of the group are encoded as words over a finite
alphabet
@ Group operation is performed by a black box containing
oracles O¢g and 051

Oc g, k) = |9, gh)
Og'lg,h) = |g,9"h)

When do we use black box groups?

Introduction

Group Commutativity

Problem

Input: Generators g1, ..., gr of G (specified as n—bit strings)

Introduction
Group Commutativity

Problem

Input: Generators g1, ..., gr of G (specified as n—bit strings)
Black box: Oracles O¢g and 051

Introduction
Group Commutativity

Problem

Input: Generators g1, ..., gr of G (specified as n—bit strings)
Black box: Oracles O¢g and 051

Task: Determine whether GG is abelian

Introduction

Classical algorithms for Group commutativity

@ Naive algorithm with query complexity ©(k?). This is optimal
deterministic algorithm up to a constant [l.Pak, 2000].

Introduction
Classical algorithms for Group commutativity

@ Naive algorithm with query complexity ©(k?). This is optimal
deterministic algorithm up to a constant [l.Pak, 2000].

e Randomized algorithm with query complexity O(k) [l.Pak,
2000]. This is optimal randomized algorithm up to a constant
[F-Magniez, A.Nayak, 2005]

Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as
h=gi'... gk,

where a; € {0,1} are determined by independent tosses of a fair
coin.

Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as
h=gi'... gk,

where a; € {0,1} are determined by independent tosses of a fair
coin.

Algorithm:
@ Take two random subproducts hy, hs

Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as
h=gi'... gk,

where a; € {0,1} are determined by independent tosses of a fair
coin.

Algorithm:
@ Take two random subproducts hy, hs
@ Test whether h1hy = hohy

Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as

h=gi'... gk,
where a; € {0,1} are determined by independent tosses of a fair
coin.
Algorithm:

@ Take two random subproducts hy, hs
@ Test whether h1hy = hohy

© Repeat steps 1,2 for ¢ times (to give correct answer with
probability at least 1 — (%)C)

Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as

h=gi'... gk,
where a; € {0,1} are determined by independent tosses of a fair
coin.
Algorithm:

@ Take two random subproducts hy, hs
@ Test whether h1hy = hohy

© Repeat steps 1,2 for ¢ times (to give correct answer with
probability at least 1 — (%)C)

@ Answer that G is abelian if the tested subproducts commuted

Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as

h=gi'... gk,
where a; € {0,1} are determined by independent tosses of a fair
coin.
Algorithm:

@ Take two random subproducts hy, ha (< 2k queries)
@ Test whether h1hy = hohy

© Repeat steps 1,2 for ¢ times (to give correct answer with
probability at least 1 — (%)C)

@ Answer that G is abelian if the tested subproducts commuted

Introduction

Randomized algorithm for group commutativity

Definition. Define random subproduct as

h=gi'... gk,
where a; € {0,1} are determined by independent tosses of a fair
coin.
Algorithm:

@ Take two random subproducts hy, ha (< 2k queries)
@ Test whether hihy = hohy (2 queries)

© Repeat steps 1,2 for ¢ times (to give correct answer with
probability at least 1 — (%)C)

@ Answer that G is abelian if the tested subproducts commuted

Quantum algorithm

Quantum algorithm

Quantum algorithm

Main steps

@ Construct a random walk on a graph

Quantum algorithm

Main steps

@ Construct a random walk on a graph

@ Quantize the random walk using Szegedy's approach

Quantum algorithm

Main steps

@ Construct a random walk on a graph
@ Quantize the random walk using Szegedy's approach

o Evaluate the quantities in

1
S+ =U+0C)

Quantum algorithm

Constructing random walk

S; — the set of all [-tuples of distinct elements from {1,...,k}

Quantum algorithm

Constructing random walk

S; — the set of all [-tuples of distinct elements from {1,...,k}
Gu'= Gu, - - - Guy» Where u = (uy,...,u;) € 5

Quantum algorithm

Constructing random walk

S; — the set of all [-tuples of distinct elements from {1,...,k}
Gu'= Gu, - - - Guy» Where u = (uy,...,u;) € 5
t, — balanced binary tree with generators gy, , ..., gy, as leaves

Quantum algorithm

Constructing random walk

S; — the set of all [-tuples of distinct elements from {1,...,k}
Gu'= Gu, - - - Guy» Where u = (uy,...,u;) € 5
t, — balanced binary tree with generators gy, , ..., gy, as leaves

Example. Let | =4,k =20,u = {3,5,10,4} € S4.

Quantum algorithm

Constructing random walk

S; — the set of all [-tuples of distinct elements from {1,...,k}
Gu'= Gu, - - - Guy» Where u = (uy,...,u;) € 5
t, — balanced binary tree with generators gy, , ..., gy, as leaves

Example. Let | =4,k =20,u = {3,5,10,4} € S4. Then
gu =93 - 95 - gio - g4 and t,, looks as follows

& e

Quantum algorithm

Constructing random walk

Random walk on S

@ States are trees ¢, u € 5

Quantum algorithm

Constructing random walk

Random walk on S

@ States are trees t,, u € 5]
@ Transitions from each ¢, are as follows
o With probability 1/2 stay at ¢,

Quantum algorithm

Constructing random walk

Random walk on S

@ States are trees t,, u € S
@ Transitions from each ¢, are as follows
o With probability 1/2 stay at ¢,
o With probability 1/2 do
@ Pick a random leave position ¢ € {1,--- ,l} and a random
generator index j € {1,--- ,k}

Quantum algorithm

Constructing random walk

Random walk on S

@ States are trees t,, u € S
@ Transitions from each ¢, are as follows
o With probability 1/2 stay at ¢,
o With probability 1/2 do
@ Pick a random leave position ¢ € {1,--- ,l} and a random
generator index j € {1,--- , k}
@ If j = uym, for some m, exchange u; and u.,, else set u; = j

Quantum algorithm

Constructing random walk

Random walk on S

@ States are trees t,, u € S
@ Transitions from each ¢, are as follows
o With probability 1/2 stay at ¢,
o With probability 1/2 do
@ Pick a random leave position ¢ € {1,--- ,l} and a random
generator index j € {1,--- , k}
@ If j = uym, for some m, exchange u; and u.,, else set u; = j
© Update tree t,,

Quantum algorithm

Constructing quantum walk

We quantize a random walk consisting of two independent random
walks on S

Quantum algorithm

Constructing quantum walk

We quantize a random walk consisting of two independent random
walks on S

e States are pairs of trees (t,,%,), where u,v € 5;

Quantum algorithm

Constructing quantum walk

We quantize a random walk consisting of two independent random
walks on S

e States are pairs of trees (t,,%,), where u,v € 5;

@ If transition matrix of the walk on S; was P, then the new
transition matrix is P Q P

Quantum algorithm

Constructing quantum walk

We quantize a random walk consisting of two independent random
walks on S

e States are pairs of trees (t,,%,), where u,v € 5;

@ If transition matrix of the walk on S; was P, then the new
transition matrix is P Q P

Vertex (ty, ty) is marked iff g, 9, # gvgu-

Quantum algorithm

Evaluating parameters — the fraction of marked vertices

Lemma. If G is not abelian and | = o(k) then

1 2
Pryes, [gugv # gvgu] > const - (l{:)

Quantum algorithm

Evaluating parameters — the fraction of marked vertices

Lemma. If G is not abelian and | = o(k) then

1 2
Pryes, [gugv # gvgu] > const - (l{:)

Thus, fraction of marked vertices, € =) ((é)2>

Quantum algorithm

Evaluating parameters — the spectral gap

Lemma. If | < % then the spectral gap for the walk on \S; is at

1
least Scilogl’

Quantum algorithm

Evaluating parameters — the spectral gap

Lemma. If | < % then the spectral gap for the walk on \S; is at

1
least Scilogl’

Thus, the spectral gap, § = Q (@)

Quantum algorithm

Estimating parameters — setup, update and checking cost

@ Setup cost, S = O(l)

Quantum algorithm

Estimating parameters — setup, update and checking cost

@ Setup cost, S = O(l)
e Update cost, U = O(log(l))

Quantum algorithm

Estimating parameters — setup, update and checking cost

@ Setup cost, S = O(l)
e Update cost, U = O(log(l))
@ Checking cost C'= O(1)

Quantum algorithm
Query complexity of the quantum algorithm

Quantum algorithm
Query complexity of the quantum algorithm

Quantum algorithm
Query complexity of the quantum algorithm

Quantum algorithm
Query complexity of the quantum algorithm

Quantum algorithm
Query complexity of the quantum algorithm

1 klog®/?1
S+ —U+C)=0 |14+ ——
VA (Vi

To minimize quantum query complexity we set | = k2/3 and get

O(k*31og k)

Lower bounds

Lower bounds

Unique collision
Black box: Function f: {1,...,k} — {1,...,k}

Lower bounds

Unique collision

Black box: Function f: {1,...,k} — {1,...,k}
Input: Value of k

Lower bounds

Unique collision

Black box: Function f: {1,...,k} — {1,...,k}

Input: Value of k

Task: Output YES if there exists a unique pair z #y € {1,...,k}
such that f(x) = f(y). Output NO if f is a permutation.

Lower bounds

Unique collision

Black box: Function f: {1,...,k} — {1,...,k}

Input: Value of k

Task: Output YES if there exists a unique pair z #y € {1,...,k}
such that f(x) = f(y). Output NO if f is a permutation.

| A\

Unique split collision

Output YES if there exists a unique pair x,y such that
ze{l,....5 ye{E+1,... k} such that f(z) = f(y).

The quantum query complexity of unique split collision is Q(k%/3).

Lower bounds

Unique collision

Black box: Function f: {1,...,k} — {1,...,k}

Input: Value of k

Task: Output YES if there exists a unique pair z #y € {1,...,k}
such that f(x) = f(y). Output NO if f is a permutation.

| A\

Unique split collision

Output YES if there exists a unique pair x,y such that
ze{l,....5 ye{E+1,... k} such that f(z) = f(y).

The quantum query complexity of unique split collision is Q(k%/3).

Lower bounds

The quantum query complexity of group commutativity is Q(k2/3).

Lower bounds

The quantum query complexity of group commutativity is Q(k2/3).

Idea: Reduce unique split collision to group commutativity by
constructing a group that is commutative iff function f has a
unique split collision.

Lower bounds

Summary

Problem. Decide whether group specified by & generators is
abelian.

o Classical query complexity is ©(k).

Lower bounds
Summary

Problem. Decide whether group specified by & generators is
abelian.

o Classical query complexity is ©(k).

@ Quantum query complexity is upper bounded by O(k’2/3 log k)
(algorithm based on Q-walk) and lower bounded by Q(%%/3).

	Introduction
	Quantum algorithm
	Lower bounds

