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Black box groups

Black box group model

Elements of the group are encoded as words over a finite
alphabet

Group operation is performed by a black box containing
oracles OG and O−1

G

OG |g, h〉 = |g, gh〉
O−1

G |g, h〉 =
∣∣g, g−1h

〉

When do we use black box groups?
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Classical algorithms for Group commutativity

Naive algorithm with query complexity Θ(k2). This is optimal
deterministic algorithm up to a constant [I.Pak, 2000].

Randomized algorithm with query complexity Θ(k) [I.Pak,
2000]. This is optimal randomized algorithm up to a constant
[F.Magniez, A.Nayak, 2005]
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Randomized algorithm for group commutativity

Definition. Define random subproduct as

h = ga1
1 . . . gak

k ,

where ai ∈ {0, 1} are determined by independent tosses of a fair
coin.

Algorithm:

1 Take two random subproducts h1, h2

(≤ 2k queries)

2 Test whether h1h2 = h2h1

(2 queries)

3 Repeat steps 1,2 for c times (to give correct answer with
probability at least 1−

(
3
4

)c)
4 Answer that G is abelian if the tested subproducts commuted
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Main steps

Construct a random walk on a graph

Quantize the random walk using Szegedy’s approach

Evaluate the quantities in

S +
1√
δε

(U + C)
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Constructing random walk

Sl – the set of all l-tuples of distinct elements from {1, . . . , k}

gu:= gu1 . . . gul
, where u = (u1, . . . , ul) ∈ Sl

tu – balanced binary tree with generators gu1 , . . . , gul
as leaves

Example. Let l = 4, k = 20, u = {3, 5, 10, 4} ∈ S4. Then
gu = g3 · g5 · g10 · g4 and tu looks as follows

gu

g3 × g5 g10 × g4

g3 g5 g10 g4
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Constructing random walk

Random walk on Sl

States are trees tu, u ∈ Sl

Transitions from each tu are as follows

With probability 1/2 stay at tu
With probability 1/2 do

1 Pick a random leave position i ∈ {1, · · · , l} and a random
generator index j ∈ {1, · · · , k}

2 If j = um for some m, exchange ui and um, else set ui = j
3 Update tree tu
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Constructing quantum walk

We quantize a random walk consisting of two independent random
walks on Sl

States are pairs of trees (tu, tv), where u, v ∈ Sl

If transition matrix of the walk on Sl was P , then the new
transition matrix is P ⊗ P

Vertex (tu, tv) is marked iff gugv 6= gvgu.
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Evaluating parameters – the fraction of marked vertices

Lemma. If G is not abelian and l = o(k) then

Pru,v∈Sl
[gugv 6= gvgu] ≥ const ·

(
l

k

)2

Thus, fraction of marked vertices, ε = Ω
((

l
k

)2)
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Evaluating parameters – the spectral gap

Lemma. If l ≤ k
2 , then the spectral gap for the walk on Sl is at

least 1
8e l log l .

Thus, the spectral gap, δ = Ω
(

1
l log l

)
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Estimating parameters – setup, update and checking cost

Setup cost, S = Θ(l)

Update cost, U = Θ(log(l))
Checking cost C = O(1)
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Query complexity of the quantum algorithm

ε = Ω
((

l
k

)2)
δ = Ω( 1

l log l )
S = Θ(l)
U = Θ(log l)
C = Θ(1)

S +
1√
δε

(U + C) = O

(
l +

k log3/2 l√
l

)

To minimize quantum query complexity we set l = k2/3 and get

O(k2/3 log k)
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Unique collision

Black box: Function f : {1, . . . , k} → {1, . . . , k}

Input: Value of k
Task: Output YES if there exists a unique pair x 6= y ∈ {1, . . . , k}
such that f(x) = f(y). Output NO if f is a permutation.

Unique split collision

Output YES if there exists a unique pair x, y such that
x ∈ {1, . . . , k

2}, y ∈ {
k
2 + 1, . . . , k} such that f(x) = f(y).

Theorem

The quantum query complexity of unique split collision is Ω(k2/3).
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Theorem

The quantum query complexity of group commutativity is Ω(k2/3).

Idea: Reduce unique split collision to group commutativity by
constructing a group that is commutative iff function f has a
unique split collision.
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Summary

Problem. Decide whether group specified by k generators is
abelian.

Classical query complexity is Θ(k).

Quantum query complexity is upper bounded by O(k2/3 log k)
(algorithm based on Q-walk) and lower bounded by Ω(k2/3).
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